

0960-894X(93)E0073-A

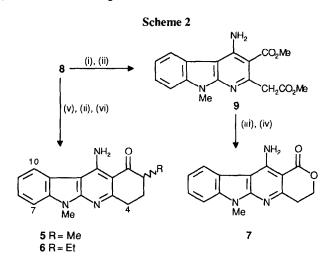
(±)11-AMINO-2,6-DIMETHYL-1,2,3,4-TETRAHYDRO-6H-QUININDOLIN-1-ONE, A NOVEL GABAA MODULATOR WITH POTENTIAL ANXIOLYTIC ACTIVITY

T.P. Blackburn, D. Bolton, I.T. Forbes, C.N. Johnson, R.T. Martin, D.R. Thomas, M. Thompson* and N. Upton

SmithKline Beecham Pharmaceuticals, Coldharbour Road, The Pinnacles, Harlow, Essex CM19 5AD

Abstract: Ketone isosteres have been investigated in a series of pyrido[2,3-b]indoles (α -carbolines). The incorporation of ring fusion into α -carbolines to produce the rigid quinindoline nucleus provides a GABA_A modulator with both increased potency and a longer duration of action.

4-Amino-2,9-dimethyl-9H-pyrido[2,3-b]indole-3-carboxylic acid, ethyl ester 1 is a GABA_A modulator which showed¹ good potential for the treatment of anxiety disorders. However, further biological evaluation revealed that esters such as 1 were relatively short acting *in vivo* with a duration of action of between one and two hours in the Geller-Seifter behavioural model of anxiety² (see Table 2). Studies undertaken³ to determine the metabolic fate of 1 in rodents revealed that the major site of metabolism was the carboxylic ester which was cleaved to the corresponding acid 2, which was biologically inactive. Some N-9 demethylation was also observed.


It was reasoned that replacement of the 3-carboxylic ester functionality with an appropriate alkyl ketone should provide a metabolically stable isostere.

Molecular modelling studies (see footnote in References and Notes Section) indicated that intramolecular hydrogen bonding of the 4-amino nicotinoate moiety of 1 stabilises a low energy conformation, which was confirmed by spectroscopic analysis⁴. This gives a carbonyl "in plane" hypothesis for a possible preferred active conformation. Therefore, cyclisation to produce a tetracyclic lactone or ketone should give a rigid analogue which would mimic this favoured low energy conformation.

Chemistry

Reagents:- (i) HOC(Me)=CHR, pTSA, toluene, reflux (ii) NaOEt, EtOH, reflux or n-BuAc, reflux.

2-Amino-l-methyl-indole-3-carbonitrile 8 was converted into the desired α -carbolines 1, 3 and 4 in around 20% overall yield using published procedures⁵. The ketones 3 and 4 were also prepared in similar yields via the aldehyde R = CHO, available from 1 via LiAlH₄ reduction and MnO₂ oxidation, using Grignard addition followed by oxidation with MnO₂ in chloroform at reflux.

Reagents:-

- (i) dimethyl 1,3-acetone dicarboxylate, CSA, toluene, reflux
- (ii) SnCl₄, n-BuAc, reflux 15 min
- (iii) LiBH₄, THF, reflux
- (iv) MnO₂, CHCl₃, 25°C
- (v) cyclohexane-1, 3-dione, pTSA, toluene, reflux
- (v1) LDA/THF/-78°C; followed by RI and warm to 25°C

The quinindolines 5 and 6 were prepared in good yield from 8⁶. Condensation of cyclohexane-1,3-dione with 8 under Dean and Stark conditions gave an intermediate enamine which was cyclised using tin (IV)

chloride in n-butyl acetate at reflux. Alkylation under basic conditions afforded the desired targets 5 and 6, and 5 was separated into pure enantiomers using chiral HPLC⁷. The lactone 7 was prepared using similar chemistry to obtain the diester 9 in 44% overall yield from 8. Reduction of 9 using lithium borohydride in THF at reflux gave the corresponding diol in 86% yield which was oxidatively cyclised to the lactone 7 in 81% yield using manganese dioxide.

Biological Results and Discussion

The inhibition of [35S]-t-butyl-bicyclophosphorothionate (TBPS) binding was used as a measure of a compound's ability to facilitate the opening of GABA_A/chloride ion channels ⁸.

The C-3 position carbonyl residue has been found to be important for GABA modulatory activity. Esters such as 1 were found to displace [35S] TBPS binding from isolated rat synaptosomes in the low micromolar region.

As can be seen in Table 1, both the n-propyl 3 and ethyl 4 ketones indeed possess similar in vitro potency to the ester 1. The ethyl ketone 4 was also found to show an increased duration of action, being active at two hours post-dose in the Geller-Seifter paradigm. Unfortunately, the six membered lactone 7 was too insoluble for evaluation in vitro and was also found to be inactive in vivo. However, there were no solubility problems with the cyclic ketones 5 and 6 which were found to have a similar level of in vitro activity to 1, with 5 being slightly more potent in vivo. It was also observed that chirality had no influence on the ability of 5 to displace [35S] TBPS binding as there was no difference between in vitro potency of the two enantiomers of 59.

Cpd	mp °Ca	[35S] TBPSb	[3H] Fluc		
		IC ₅₀ μM	IC ₅₀ μM	p.o.	
1	79-80	2.0 ± 0.2	>100	10	
2	230-2	>100	>100	>50	
3	109-10	2.3 ± 0.3	NT	20	
4	72-3	1.6 ± 0.4	>100	20	
5	155-6	0.95 ± 0.1	>100	5	
6	129-31	0.94 ± 0.2	NT	20	
7	204-5	[I	I	>20	
Diazepam	_	0.01d	0.12 ^e	2.5	

Table 1: Physical and Biological Data

- a. Melting points are uncorrected; compounds analysed for C, H and N within ± 0.4% of the theoretical values; NMR spectral
 data are shown in ref. 10.
- The detailed procedure of this test is described in ref.8; all determinations were done in the presence of 5μM GABA. Values are a mean of three determinations.
- c. Procedure as in ref.11. d. Max inhibition <50%; quoted value is an IC25.
- e. 100% inhibition at dose tested. I= insoluble; NT= not tested; MED = minimum effective dose.

0.1	-	1			
Cpd	Dose				
	mg/kg	1		1	
	p.o.	1h post-dose		2h post-dose	
		FR	Nr/N	FR	Nr/N
		% Change]	% Change	
1	5	2	5/6		
	10	+20**	10/15	{	
	20	+22**	12/16	+6	6/16
	50	+63**	15/16	+4	6/16
	100	+122**	14/16		
5	2.5	0	0/6		
	5	+19*	8/14		
	10	+43**	5/6	+22	7/14
	20	+52**	5/6	+36**	6/6
	50	+146**	5/6	+62**	6/6
	100	+137**	6/6	+141**	6/6
4	20	+41**	5/6	+28*	5/8
Diazepam	5	+57**	6/8	+38**	8/16

Table 2: Biological Evaluation in the Geller-Seifter test^a

Both the ester 1 and the quinindoline 5 showed a dose related increase in the level of punished responding when compared to control animals (Table 2). However, for 1, the degree of punished responding declined steadily over a two hour period and the compound was inactive at the higher dose of 50mg/kg p.o. at the two hour time point. Conversely, the quinindoline 5 showed a greater level of punished responding in the Geller-Seifter paradigm at both one and two hours post dose. The MED of 5 was found to be about twice that of diazepam. There were no deficits observed with 1 and 5 during the unpunished phase of responding at all doses tested, possibly indicating a good separation of anxiolytic activity from sedative side-effects 12.

From a mechanistic viewpoint, the compounds were not active at classical benzodiazepine (BDZ) sites, as measured by inhibition of [³H] flunitrazepam binding (IC₅₀>100µM) to rat cerebral cortex¹¹. Hence the compounds do not act as BDZ partial agonists and must modulate the GABA_A/chloride ion channel *via* another site.

The quinindoline 5, with a reduced capacity for intermolecular hydrogen bonding ability as compared to the uncyclised compounds 1 and $3^{4,10}$, showed a log D_{oct} of 1.50 (at pH1.72 and 25°C) and a Δ log P of +1.35 suggesting ¹³ good brain penetration which was confirmed *in vivo*.

In conclusion, we have demonstrated that incorporation of a ring fused ketone provides a potent ester isostere with a longer duration of action.

a. *p<0.05, **p<0.01, Two-way ANOVA; FR is the punished responding phase; Nr/N is the number
of animals responding out of those tested.

Acknowledgements

We wish to thank the Analytical Sciences Unit, SB, for logP measurements and chiral HPLC work and Miss Kellie Shrimpton for her assistance in preparing this manuscript. The authors also wish to thank Mrs. T. Stean for invaluable technical assistance.

References and Notes

- 1. Bolton, D.; Forbes, I.T.; Hayward, C.J.; Piper, D.C.; Thomas, D.R.; Thompson, M.; Upton, N. BioMed. Chem. Lett., paper in press.
- 2. Geller, I.; Seifter, J. Pyschopharmacol. 1960, 1, 482.
- 3. Unpublished results from Drug Metabolism and Pharmacokinetics Unit, SB.
- 4. In the quinindoline series, spectroscopic measurements confirm that there is a greater degree of intramolecular hydrogen bonding between the amino and carbonyl groups. For 1 the ¹H NMR (270MHz, CDCl₃) shows a broad 2H, s at 6.7-6.8 for the 4-NH₂ group whereas the corresponding signal for 5 is too broad to be observed. Also supported by IR (KBr disc) data for 1 1680, 3390, 3500 and for 5 1640, 3330, 3440cm⁻¹.
- 5. Forbes, I.T.; Johnson, C.N.; Thompson, M. J. Chem. Soc. Perkin Trans. 1 1992, 275.
- 6. Forbes, I.T.; Martin, R.T.; Thompson, M. 1992, US Patent 5079246.
- 7. The racemic 5 obtained was separated into the two enantiomers by the use of HPLC using the following conditions. Column: Chiral-AGP 4.0x100mm; ID = 18RC. Eluent: 20/80 MeOH/0.02M aqueous phosphate buffer at pH 7.0 with a flow rate of 1.0ml/min. Detection: UV at 278nm. The retention times of the (+) and (-) enantiomers under these conditions were 34.0 and 42.2 min respectively.
- a. Trifiletti, R.R.; Snowman, A.M.; Snyder, S.H. Mol. Pharmacol. 1984, 26, 470.
 b. Maksay, G.; Simonyi, M. Mol. Pharmacol. 1986, 30, 321.
- 9. The IC $_{50}$ values for the enantiomers were (+) 1.09 and (-) 1.06 μM (mean of two determinations).
- 10. Physical data for new compounds 3 to 7.
 - Recrystallisation from methanol gave off-white crystals. ¹H NMR (270 MHz, CDCl₃) 7.78-7.85 (d, J=8Hz, 1H) 7.40-7.49 (m, 2H), 7.24-7.34 (m, 1H), 6.17-6.31 (broad s, 2H), 3.91 (s, 3H), 2.84-2.93 (t, J=7Hz, 2H), 2.83 (s, 3H), 1.70-1.85 (m, J=7Hz, 2H), 0.91-1.02 (t, J=7Hz, 3H); analysis calculated for C₁₇H₁₉N₃O: C, 72.57; H, 6.81; N, 14.93; found: C, 72.59; H, 6.91; N, 14.87.
 - Recrystallisation from ethanol gave white crystals. ¹H NMR (270 MHz, CDCl₃) 7.80-7.84 (d, J=8Hz, 1H), 7.41-7.46 (m, 2H), 7.26-7.33 (m, 1H), 6.23-6.34 (broad s, 2H), 3.92 (s, 3H), 2.88-

- 2.97 (q, J=7Hz, 2H), 2.78 (s, 3H), 1.22-1.28 (t, J=7Hz, 3H); analysis calculated for $C_{16}H_{17}N_3O$: C, 71.89; H, 6.41; N, 15.72; found: C, 71.56; H, 6.32; N, 15.89.
- Recrystallisation from ethanol gave white crystals. ¹H NMR (270 MHz, CDCl₃) 7.77-7.89 (m, 1H), 7.21-7.53 (m, 3H), 3.90 (s, 3H), 3.04-3.31 (m, 2H), 2.55-2.78 (m, 1H), 2.11-2.30 (m, 1H), 1.80-2.03 (m, 1H), 1.31 (d, J=11Hz, 3H); analysis calculated for C₁₇H₁₇N₃O: C, 73.10; H, 6.13; N, 15.04; found: C, 73.16; H, 6.14; N, 15.02.
- 6. Recrystallisation from ethyl acetate-60:80 petroleum ether gave cream needles. ¹H NMR (270 MHz, CDCl₃) 7.71-7.88 (m, 1H), 7.21-7.50 (m, 3H), 3.89 (s, 3H), 2.98-3.33 (m, 2H), 2.38-2.57 (m, 1H), 2.16-2.35 (m, 1H), 1.80-2.13 (m, 2H), 1.50-1.75 (m, 1H), 1.06 (t, J=7Hz, 3H); analysis calculated for C₁₈H₁₉N₃O: C, 73.69; H, 6.53; N, 14.32; found: C, 73.87; H, 6.72; N, 14.09.
- Recrystallisation from ethanol as off-white crystals. ¹H NMR (270 MHz, CDCl₃) 8.40-6.10 (broad, 2H), 7.83 (d, J=9Hz, 1H), 7.45 (m, 2H), 7.34 (dt, J=9, 2Hz, 1H), 4.56 (t, J=8Hz, 2H), 3.89 (s, 3H), 3.22 (t, J=8Hz, 2H); analysis calculated for C₁₅H₁₃N₃O₂: C, 67.41; H, 4.90; N, 15.72; found: C, 67.28; H, 4.90; N, 15.62.
- 11. Martin, I.L.; Candy, J.M. Neuropharmacology 1978, 17, 993.
- 12. At a dose of 40mg/kg p.o. diazepam showed a reduction in the level of unpunished responding compared to control values. 5 was examined in rat models for muscle relaxant (rotorod test), sedative (spontaneous locomotor activity test) and ethanol interaction (EtOH-induced sleeptime) properties. 5 was without significant effect at 300mg/kg p.o. In contrast, diazepam produced marked significant effects on all three parameters at doses of 5 to 20mg/kg p.o. (for methods see: "Animal Models in Psychiatry and Neurology". Hannin, I.; Usdin, E. Eds; Pergamon Press, Oxford, 1977).
- a. Hansch, C.; Sammes, P.G.; Taylor, J.B. "Comprehensive Medicinal Chemistry"; Ramsden, C.A.;
 Ed.; Pergamon Press, Oxford, 1990, Vol 4, p. 402.
 - b. Young, R.C.; Mitchell, R.C.; Brown, T.H.; Ganellin, C.R.; Griffiths, R.; Jones, M.; Rana, K.K.; Saunders, D.; Smith, I.R.; Sore, N.E.; Wilks, T.J. J. Med. Chem. 1988, 31, 656. Partition coefficients were measured by a conventional shake-flask technique as described by:- Leo, A.; Hansch, C.; Elkins, D.; Chem. Rev. 1971, 71, 525.
- 14. **Footnote**:- Initial studies on the GABA_A pharmacophore were carried out using Gaussian calculations with SV3 21G and STO 3G basis sets. A common volume for GABA_A modulators based on the examination of active and inactive compounds was calculated. The model was refined by calculation of AM1/Gaussian potential-derived charges and 3-D electrostatic potential surfaces were produced and compared to that of 1 using SYBYL.

(Received in Belgium 16 July 1993; accepted 8 November 1993)